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Abstract
For a massive scalar field with a general curvature coupling parameter, we
evaluate Wightman function, vacuum expectation values of the field square
and the energy–momentum tensor induced by a Z2-symmetric brane with finite
thickness located on (D +1)-dimensional AdS bulk. For the general case of the
static plane symmetric interior structure, the expectation values in the region
outside the brane are presented as the sum of free AdS and brane-induced
parts. For a conformally coupled massless scalar, the brane-induced part in the
vacuum energy–momentum tensor vanishes. In the limit of strong gravitational
fields, the brane-induced parts are exponentially suppressed for points not too
close to the brane boundary. As an application of general results, a special
model is considered in which the geometry inside the brane is a slice of the
Minkowski spacetime orbifolded along the direction perpendicular to the brane.
For this model the Wightman function, vacuum expectation values of the field
square and the energy–momentum tensor inside the brane are evaluated. It
is shown that for both minimally and conformally coupled scalar fields the
interior vacuum forces acting on the brane boundaries tend to decrease the
brane thickness.

PACS numbers: 04.62.+v, 11.10.Kk

1. Introduction

Braneworlds naturally appear in string/M-theory context and provide a novel setting for
discussing phenomenological and cosmological issues related to extra dimensions. Motivated
by the problems of the radion stabilization and the generation of cosmological constant, the
role of quantum effects in braneworlds has attracted a great deal of attention [1–41]. A class
of higher dimensional models with compact internal spaces is considered in [42]. Many of
treatments of quantum fields in braneworlds deal mainly with the case of the idealized brane
with zero thickness. From a more realistic point of view, we expect that the branes have
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a finite thickness. The finite core effects also lead to the modification of the Friedmann
equation describing the cosmological evolution inside the brane. In string theory, there exists
the minimum length scale and we cannot neglect the thickness of the corresponding branes at
the string scale. The branes modeled by field theoretical domain walls have a characteristic
thickness determined by the energy scale where the symmetry of the system is spontaneously
broken. Various models are considered for a thick brane. Mainly, these models are constructed
as solutions to the coupled Einstein-scalar equations by choosing a suitable potential for the
scalar field. Vacuum fluctuations for a thick de Sitter brane supported by a bulk scalar
field with an axion-like potential and the self-consistency of this braneworld are investigated
in [36].

In the present paper based on [40], we describe the effects of core on properties of the
quantum vacuum for a general plane symmetric static model of the brane with finite thickness.
The most important quantities characterizing these properties are the vacuum expectation
values of the field square and the energy–momentum tensor. Though the corresponding
operators are local, due to the global nature of the vacuum, the vacuum expectation values
describe the global properties of the bulk and carry an important information about the internal
structure of the brane. As the first step for the investigation of vacuum densities, we evaluate
the positive frequency Wightman function for a massive scalar field with a general curvature
coupling parameter. This function gives comprehensive insight into vacuum fluctuations
and determines the response of a particle detector of the Unruh–DeWitt type moving in the
brane bulk. The problem under consideration is also of separate interest as an example with
gravitational and boundary-induced polarizations of the vacuum, where all calculations can
be performed in a closed form. The corresponding results specify the conditions under which
we can ignore the details of the interior structure and approximate the effect of the brane by
the idealized model. In addition, as it is shown below, the phenomenological parameters in
the zero-thickness brane models such as brane mass terms for scalar fields are calculable in
terms of the inner structure of the brane within the framework of the model considered in the
present paper.

This paper is organized as follows. In section 2, we consider the Wightman function in
the exterior of the brane for the general structure of the core with Poincare invariance along
the directions parallel to the brane. By using the formula for the Wightman function, in
section 3 we investigate the vacuum expectation values of the field square and the energy–
momentum tensor. As an illustration of the general results, in section 4 we consider a model
with Minkowskian geometry inside the brane. For this model, the vacuum expectation values
inside the core are investigated as well. The last section contains a summary of the work.

2. Wightman function

We consider a brane with finite thickness 2a on the background of (D + 1)-dimensional AdS
spacetime with the curvature radius 1/kD (see figure 1). As in the Randall–Sundrum (RS)
1-brane scenario [43], we assume that the model is Z2-symmetric with respect to the plane
y = 0 located at the brane center. The spacetime is described by two distinct metric tensors
in the regions outside and inside the brane. The corresponding line element has the form

ds2 =
{

e−2kD |y|(dt2 − dx2) − dy2, if |y| > a,

e2u(y)(dt2 − dx2) − e2w(y) dy2, if |y| < a,
(1)

where x = (x1, . . . , xD−1) are the coordinates parallel to the brane. We assume that the
geometry inside the brane is Poincaré invariant along these directions. Due to the Z2-symmetry,
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Figure 1. The geometry of a thick brane on AdS bulk.

the functions u(y) and w(y) are even functions of y. These functions are continuous at the
core boundary: u(a) = −kDa and w(a) = 0. Here, we assume that an additional infinitely
thin plane shell located at |y| = a is present with the surface energy–momentum tensor
τ k
i , τD

D = 0. Under the Israel matching conditions, one has

u′(a−) = −kD + 8πGτ 0
0

/
(D − 1), τ k

i = τ 0
0 δk

i , i = 1, 2, . . . ,D − 1, (2)

where G is the Newton gravitational constant.
We are interested in the vacuum polarization effects for a scalar field with the general

curvature coupling parameter ξ propagating in the bulk described by line element (1). The
corresponding field equation has the form

(∇i∇ i + m2 + ξR)ϕ = 0, (3)

where R is the Ricci scalar for the background spacetime. As a first stage for the evaluation
of the vacuum expectation values (VEVs) for the field square and the energy–momentum
tensor (EMT), we consider the positive frequency Wightman function. This function can be
evaluated by using the mode sum formula

〈0|ϕ(x)ϕ(x ′)|0〉 =
∑

α

ϕα(x)ϕ∗
α(x ′), (4)

where {ϕα(x), ϕ∗
α(x ′)} is a complete orthonormalized set of positive and negative frequency

solutions to the field equation specified by the collective index α.
The eigenfunctions can be presented in the form

ϕα(xi) = eik·x−iωt√
2ω(2π)D−1

fλ(y), ω =
√

k2 + λ2, k = |k|, (5)

where λ is the separation constant. Below we will assume that y � 0. The corresponding
formulae in the region y < 0 are obtained from the Z2-symmetry of the model. Substituting
eigenfunctions (5) into field equation (3), for the function fλ(y) one obtains the equation

e−Du−w∂y[eDu−w∂yfλ] − (m2 + ξR − λ2 e−2u)fλ = 0. (6)

For the exterior AdS geometry one has u(y) = −kDy,R = −D(D + 1)k2
D and the solution

to equation (6) is expressed in terms of cylinder functions. The solution in the region
y < a even in y we will denote by R(y, λ), R(−y, λ) = R(y, λ). The parameter λ enters
in the radial equation in the form λ2 and this solution can be chosen in such a way that
R(y,−λ) = const · R(y, λ). Now for the eigenfunctions one has

fλ(y) =
{

R(y, λ), if y < a,

eDkDy/2 [AνJν(λz) + BνYν(λz)] , if y > a,
(7)
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where Aν and Bν are the integration constants, Jν(x) and Yν(x) are the Bessel and Neumann
functions, and we use the notations

ν =
√

D2/4 − D(D + 1)ξ + m2
/
k2
D, z = ekDy/kD. (8)

For a conformally coupled massless scalar ξ = (D − 1)/(4D), ν = 1/2 and the cylinder
functions in equation (7) are expressed in terms of elementary functions.

The radial function is continuous at y = a. In order to find the condition for its derivative,
we note that the discontinuity of the function u′(y) at y = a leads to the delta function
term 2D[u′(a−) + kD]δ(y − a) in the Ricci scalar and hence, in equation (6) for the radial
eigenfunctions. For a non-minimally coupled scalar field, due to the delta function term in the
equation for the radial eigenfunctions, these functions have a discontinuity in their slope at
y = a . The corresponding jump condition is obtained by integrating the equation (6) through
the point y = a

f ′
λ(a+) − f ′

λ(a−) = 16πGDξ

D − 1
τ 0

0 fλ(a). (9)

Now the coefficients in the formulae (7) for the exterior eigenfunctions are determined by the
continuity condition for the radial eigenfunctions and by the jump condition for their radial
derivative. From these conditions for the radial part of the eigenfunctions in the region y > a

we find

fλ(y) = π

2
eDkD(y−a)/2R(a, λ)[Ȳν(λza)Jν(λz) − J̄ν(λza)Yν(λz)]. (10)

where za = ekDa/kD . Here and in what follows we use the notation

F̄ (z) ≡ zF ′(z) +

[
D

2
− 16πGDξ

(D − 1)kD

τ 0
0 − ∂yR(y, λ)|y=a

kDR(a, λ)

]
F(z). (11)

Note that due to our choice of the function R(y, λ), the logarithmic derivative in formula (11)
is an even function of λ. Under the orthonormalization condition for the radial eigenfunctions,
one finds the relation

R−2(a, λ) = π2

2

J̄ 2
ν (λza) + Ȳ 2

ν (λza)

zD
a kD−1

D λ
, (12)

which determines the normalization coefficient for the interior eigenfunctions.
Substituting the eigenfunctions (5) into the mode sum (4), under the condition z + z′ >

2za + |t − t ′| the Wightman function can be presented in the form

〈0|ϕ(x)ϕ(x ′)|0〉 = 1

2
〈0S |ϕ(x)ϕ(x ′)|0S〉 − kD−1

D

(2π)D
(zz′)

D
2

∫
dk eik·(x−x′)

∫ ∞

k

dλ λ

× Ĩ ν(λza)

K̃ν(λza)

Kν(λz)Kν(λz′)√
λ2 − k2

cosh
[√

λ2 − k2(t ′ − t)
]
, (13)

where 〈0S |ϕ(x)ϕ(x ′)|0S〉 is the positive frequency Wightman function for the AdS spacetime
without boundaries (see, for instance, [30]), and the second term on the right is induced by the
brane. Here and below the tilted notation for the modified Bessel functions Iν(x) and Kν(x)

is defined by the formula

F̃ (x) ≡ xF ′(x) + R(a, x)F (x), (14)

with the notation

R(a, x) = D

2
− 16πGDξ

(D − 1)kD

τ 0
0 − ∂yR(y, x eπ i/2/za)|y=a

kDR(a, x eπ i/2/za)
. (15)
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Quantum effects in free AdS spacetime are well investigated in the literature (see references
given in [30]) and in the discussion below we will be mainly concentrated on the effects
induced by the brane.

As we see from (13), the information about the inner structure of the brane is contained
in the logarithmic derivative of the interior radial function in formula (15). In the RS 1-brane
model with the brane of zero thickness the brane-induced part in the Wightman function is
given by a similar formula with the replacement [30]

R(a, x) → D/2 − 2Dξ − c/2kD, (16)

in the definition (14) of the tilted notation. The parameter c is the brane mass term for a scalar
field which is a phenomenological parameter in the model with zero thickness brane. As we
see, in the model under consideration the effective brane mass term is determined by the core
structure. Note that in the RS 2-brane model the mass terms on the branes determine the
1-loop effective potential for the radion field and play an important role in the stabilization of
the interbrane distance.

3. Vacuum expectation values outside the brane

Outside the brane, the local geometry is the same as that for the AdS spacetime, and the
renormalization procedure for the local characteristics of the vacuum is the same as for the
free AdS spacetime. By using the formula for the Wightman function from the previous
section, the VEV of the field square in the exterior region is presented in the form

〈0|ϕ2|0〉 = 1
2 〈0S |ϕ2|0S〉 + 〈ϕ2〉b, (17)

where 〈0S |ϕ2|0S〉 is the VEV of the field square in the free AdS spacetime. The part induced
by the brane is obtained from the second term on the right of formula (13) in the coincidence
limit:

〈ϕ2〉b = − kD−1
D zD

(4π)D/2� (D/2)

∫ ∞

0
dx xD−1 Ĩ ν(xza)

K̃ν(xza)
K2

ν (xz). (18)

The VEV of the field square in the free AdS spacetime is well investigated in literature [45]
and does not depend on the spacetime point, which is a direct consequence of the maximal
symmetry of the AdS bulk.

At large distances from the brane, z 
 za , we introduce a new integration variable y = xz

and expand the integrand over za/z. By using the formula for the integral involving the square
of the MacDonald function, to the leading order we obtain

〈ϕ2〉b = − kD−1
D (za/z)

2ν

2D+2ν+1π(D−1)/2

R(a, 0) + ν

R(a, 0) − ν

�(D/2 + ν)�(D/2 + 2ν)

ν�2(ν)�((D + 1)/2 + ν)
. (19)

As we see, at large distances from the brane the brane-induced part is exponentially suppressed
by the factor exp(−2νkDy).

Having the Wightman function and the VEV for the field square, the VEV of the EMT in
the region y > a can be evaluated by using the formula

〈0|Tik|0〉 = lim
x ′→x

∂i∂
′
k〈0|ϕ(x)ϕ(x ′)|0〉 +

[(
ξ − 1

4

)
gik∇l∇ l − ξ∇i∇k − ξRik

] 〈0|ϕ2|0〉. (20)

Note that on the left of this formula, we have used the expression for the EMT which differs
from the standard one by the term which vanishes on the solutions of the field equation (3)
(see [46]). Similar to the Wightman function, the components of the vacuum EMT are
presented in the decomposed form

〈0|Tik|0〉 = 1
2 〈0S |Tik|0S〉 + 〈Tik〉b, (21)
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where 〈0S |Tik|0S〉 is the vacuum EMT in the free AdS spacetime and the part 〈Tik〉b is induced
by the brane. For a conformally coupled massless scalar field and for even values of D the
renormalized free AdS part in the VEV of the EMT vanishes. For odd values of D, this part
is completely determined by the trace anomaly (see [44]).

Substituting the expressions of the Wightman function and the VEV of the field square
into formula (20), for the part of the EMT induced by the brane one obtains

〈
T k

i

〉
b = − kD+1

D zDδk
i

(4π)D/2� (D/2)

∫ ∞

0
dx xD−1 Ĩ ν(xza)

K̃ν(xza)
F (i)[Kν(xz)], (22)

where for a given function g(v) we have introduced the notations

F (i)[g(v)] =
(

1

2
− 2ξ

)[
v2g′2(v) +

(
D +

4ξ

4ξ − 1

)
vg(v)g′(v)

+

(
ν2 + v2 +

2v2

D(4ξ − 1)

)
g2(v)

]
, (23)

F (D)[g(v)] = −v2

2
g′2(v) +

D

2
(4ξ − 1) vg(v)g′(v)

+
1

2
[v2 + ν2 + 2ξD(D + 1) − D2/2]g2(v), (24)

with i = 0, 1, . . . , D − 1. For a conformally coupled massless scalar field one has ν = 1/2
and from formulae (23) and (24) it follows that F (i)[Kν(x)] = F (D)[Kν(x)] = 0. Hence, in
this case the brane-induced parts in the VEVs of the EMT vanish. Note that for a conformally
coupled scalar and for even values of D the conformal anomaly is absent and the free AdS part
in the vacuum EMT vanishes as well.

For large distances from the brane, z 
 za , introducing a new integration variable y = xz

we expand the integrand over za/z. To the leading order this leads to the result

〈
T k

i

〉
b = − 21−D−2νkD+1

D δk
i

πD/2� (D/2) ν�2(ν)

(
za

z

)2ν R(a) + ν

R(a) − ν

∫ ∞

0
dx xD+2ν−1F (i)[Kν(x)]. (25)

The integrals in this formula may be evaluated by using the formulae from [47]. Note that the
free AdS parts in the VEVs of both field square and the EMT do not depend on the spacetime
point and, hence, at large distances from the brane they dominate in the total VEVs. Noting
that in the limit of strong gravitational field in the region outside the brane, corresponding
to large values of kD , one has z/za = ekD(y−a) 
 1 , we see that formulae (19) and (25)
also describe the asymptotic behavior of the brane-induced VEVs in this limit. Hence, in
the limit of strong gravitational field, for the points not too close to the brane boundary, the
brane-induced parts are exponentially suppressed. The free AdS parts behave as kD−1

D and
their contribution dominates for strong gravitational fields.

4. The model with flat spacetime inside the brane

4.1. The exterior region

As an application of the general results given above let us consider a simple example
assuming that the spacetime inside the brane is flat. The corresponding models for the
cosmic string and global monopole cores were considered in [48] and are known as flower-
pot models. Under the continuity condition on the brane boundary, it follows that in
coordinates (xµ, y) for the interior functions one has u(y) = −kDa,w(y) = 0. From the

6
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matching condition (2) we find the corresponding surface EMT with the nonzero components
τ k
i = (D − 1)kDδk

i

/
8πG, i = 0, 1, . . . , D − 1. The corresponding surface energy density is

positive. We consider the VEVs in the exterior and interior regions separately.
For the model under consideration, the interior radial eigenfunction with Z2-symmetry,

R(−y, λ) = R(y, λ), has the form

R(y, λ) = 2zD
a kD−1

D λ cos(kyy)

π2 cos2(kya)
[
J̄ 2

ν (λza) + Ȳ 2
ν (λza)

] , k2
y = λ2 e2kDa − m2, (26)

where the normalization coefficient is found from formula (12) and the barred notation is
defined by

F̄ (z) ≡ zF ′(z) + [D/2 − 2ξD + (ky/kD) tan(kya)]F(z). (27)

As a result, the parts in the Wightman function, in the VEVs of the field square and the EMT
induced by the brane are given by formulae (13 ), (18) and (22) respectively, where the tilted
notations for the modified Bessel functions are defined by (14) with the coefficient

R(a, x) = D/2 − 2ξD −
√

x2 + m2
/
k2
D tanh

(
akD

√
x2 + m2

/
k2
D

)
. (28)

Comparing (28) with (16), we see that in the limit a → 0 from the results of the model with flat
interior spacetime the corresponding formulae in the RS 1-brane model with a zero thickness
brane are obtained.

The VEVs of the field square and the EMT diverge on the boundary of the brane. The
leading term in the corresponding asymptotic expansion for the field square is given by

〈ϕ2〉b ≈ kDAD

2D+5π(D+1)/2

�((D − 1)/2)

(D − 2)(y − a)D−2
, D > 2, (29)

with the notation

AD = 4D − D2 + 1 + 4ξD(D − 3) − 4m2/k2
D. (30)

For D � 2, the VEV of the field square is finite on the core boundary. Note that in the model
with zero thickness brane located at y = 0, the corresponding VEVs near the brane behave
as y1−D .

For the asymptotic behavior of the EMT we have (no summation over i)〈
T i

i

〉
b ≈ −kDAD(ξ − ξD)

2D+4π(D+1)/2

�((D + 1)/2)

(y − a)D
,

〈
T D

D

〉
b ≈ DkD(y − a)

D − 1

〈
T 0

0

〉
b, (31)

with i = 0, 1, . . . , D − 1. For a conformally coupled field (no summation over i)

〈
T i

i

〉
b ≈ D − 3

DkD(y − a)

〈
T D

D

〉
b ≈ m2

D
〈ϕ2〉b, i = 0, 1, . . . , D − 1, D > 3. (32)

For D = 3 the radial stress
〈
T D

D

〉
b diverges logarithmically. In the case D = 2 the

corresponding VEVs are finite on the boundary of the brane. In the limit m/kD 
 1 the
brane-induced VEVs are suppressed by the factor exp[−2(m/kD) ln(z/za)].

On the left panel of figure 2, we have plotted the dependence of the brane-induced parts
in the VEVs of the energy density and radial stress on z/za for a minimally coupled massless
scalar field (ξ = 0) in the case D = 4. This parameter is related to the distance from the
boundary of the brane by the formula z/za = exp[kD(y − a)]. Recall that for a conformally
coupled massless scalar field the brane-induced VEVs vanish. Note that in D = 4 the
conformal anomaly is absent and for massless scalar fields the VEV of the energy–momentum
tensor in the free AdS spacetime is zero.

7
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Figure 2. On the left panel, the part in the VEV of the energy density (full curves) and radial stress
(dashed curves), k−D−1

D 〈T i
i 〉b, i = 0,D, induced by the brane are plotted as the functions of z/za

for a minimally coupled massless scalar field in D = 4. On the right panel, the corresponding
energy density inside the brane, aD+1〈T 0

0 〉(int)
b , induced by the AdS geometry in the exterior region

is plotted as a function of y/a. The numbers near the curves correspond to the values of akD .

4.2. The interior region

Now let us consider the vacuum polarization effects inside the brane for the model with a
flat interior. Substituting eigenfunctions (26) into the mode sum formula, the corresponding
Wightman function is presented in the form

〈0|ϕ(x)ϕ(x ′)|0〉 = G0(x, x ′) + G1(x, x ′), (33)

where G0(x, x ′) is the Wightman function in the Minkowski spacetime orbifolded along the
y-direction and

G1(x, x ′) = − (zakD)D

(2π)D

∫
dk eik·(x−x′)

∫ ∞

k

dx
xC{e−�(x)a,Kν(xza)}

C{cosh(�(x)a),Kν(xza)}
×cosh(�(x)y) cosh(�(x)y ′)

�(x)
√

x2 − k2
cosh

[√
x2 − k2(t − t ′)

]
. (34)

In (34), �(x) =
√

x2 e2kDa + m2, and we have used the notation

C{f (u), g(v)} = vf (u)g′(v) + [(D/2 − 2ξD)f (u) − (u/akD)f ′(u)]g(v), (35)

with g(v) = Kν(v) and f (u) = e−u, cosh u for the numerator and denominator, respectively.
The function G0(x, x ′) differs by the factor 1/2 from the Wightman function for a plate in
the Minkowski spacetime located at y = 0 on which the field obeys the Neumann boundary
condition. The term G1(x, x ′) is induced by the AdS geometry in the region y > a. For a
conformally coupled massless scalar field one has ν = 1/2 and by using definition (35) it can
be explicitly checked that C{e−u,Kν(u/akD)} = 0. Hence, in this case the part G1(x, x ′)
vanishes.

Now we turn to the evaluation of the renormalized VEV for the field square. The
renormalization corresponds to the omission of the part coming from the Minkowskian
Wightman function in (33). As a result, the VEV is presented in the form

〈ϕ2〉(int)
ren = 〈ϕ2〉(int)

0,ren + 〈ϕ2〉(int)
b . (36)

8
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Here, the part 〈ϕ2〉(int)
0,ren is given by the formula

〈ϕ2〉(int)
0,ren = mD−1

2(2π)(D+1)/2

K(D−1)/2 (2my)

(2my)(D−1)/2
, (37)

and the second term is obtained from (34) in the coincidence limit,

〈ϕ2〉(int)
b = − (4π)−D/2

�(D/2)

∫ ∞

m

dx(x2 − m2)D/2−1 cosh2(xy)Uν(x), (38)

with the notation

Uν(x) = C{e−ax,Kν(
√

x2 − m2/kD)}
C{cosh(ax),Kν(

√
x2 − m2/kD)} . (39)

This part in the VEV of the field square is induced by the exterior AdS geometry.
The integral on the right of formula (38) is finite for |y| < a and diverges on the boundary

of the brane |y| = a. To the leading order, near the boundary y = a we find

〈ϕ2〉(int)
b ≈ −kD(ξ − ξD)

(4π)(D+1)/2

D�((D − 1)/2)

(D − 2)(a − y)D−2
. (40)

In the limit am 
 1, the main contribution into the integral in formula ( 38) comes from the
lower limit and one finds

〈ϕ2〉(int)
b ≈ −BmD−1 cosh2(my)

(4πam)D/2
e−2am, B ≡ D/2 − 2ξD + m/kD − ν

D/2 − 2ξD − m/kD − ν
. (41)

As we could expect, in this limit the VEVs are exponentially suppressed.
As in the case of the field square, the VEV for the EMT is presented in the form〈

T k
i

〉(int)
ren = 〈

T k
i

〉(int)
0,ren +

〈
T k

i

〉(int)
b , (42)

where 〈Tik〉(int)
0,ren is the vacuum EMT in the Minkowski spacetime orbifolded along the y-

direction and the presence of the part 〈Tik〉(int)
b is related to that the geometry in the region

y > a is AdS. For the first part one has

〈
T k

i

〉(int)
0,ren = mD+1δk

i

(4πmy)
D+1

2

[
KD+1

2
(2my)(2ξ − 1) + (1 − 4ξ)myKD+3

2
(2my)

]
, (43)

with i = 0, 1, . . . ,D − 1 and
〈
T D

D

〉(int)
0,ren = 0. For the second term on the right of (42) we find

(no summation over i)

〈
T i

i

〉(int)
b = (4π)−D/2

�(D/2)

∫ ∞

m

dx(x2 − m2)D/2Uν(x)

×
{

1

D
cosh2(xy) +

(4ξ − 1)x2

x2 − m2

[
cosh2(xy) − 1

2

]}
, (44)

〈
T D

D

〉(int)
b = − (4π)−D/2

2�(D/2)

∫ ∞

m

dx(x2 − m2)D/2−1x2Uν(x), (45)

with i = 0, 1, . . . , D − 1, and the function Uν(x) is defined by formula (39). Note that the
radial stress inside the brane does not depend on spacetime point. This result could also be
obtained directly from the continuity equation. For a conformally coupled massless scalar we
have Uν(x) = 0 and hence, the parts in the VEV of the EMT given by (44) and (45) vanish.
In this case, the part

〈
T i

i

〉(int)
0,ren vanishes as well.

9
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For the VEV of the EMT near the brane core we find (no summation over i)〈
T i

i

〉(int)
b ≈ D − 1

DkD(y − a)

〈
T D

D

〉(int)
b ≈ DkD(ξ − ξD)2

2Dπ(D+1)/2

�((D + 1)/2)

(a − y)D
, (46)

with i = 0, 1, . . . , D−1. For a conformally coupled scalar field the corresponding asymptotic
behavior is given by formulae (32). In the limit am 
 1 to the leading order one has (no
summation over i)〈
T D

D

〉(int)
b ≈ −BmD+1 e−2am

2(4πam)D/2
,

〈
T i

i

〉(int)
b ≈ (1 − 4ξ)[2 cosh2(my) − 1]

〈
T D

D

〉(int)
b . (47)

On the right panel of figure 2 we have plotted the dependence of the part in the VEV
of the energy density induced by the exterior AdS geometry in the region inside the brane
as a function of y/a for a minimally coupled massless scalar field in the case D = 4. The
corresponding radial stress does not depend on y and

〈
T D

D

〉(int)
b ≈ 0.001 34/a5 for akD = 1

and
〈
T D

D

〉(int)
b ≈ 0.000 173/a5 for akD = 0.1. We recall that for a conformally coupled

massless scalar field, the corresponding VEVs vanish for both field square and the EMT.
The perpendicular interior vacuum force acting per unit surface of the brane boundary is
determined by −〈

T D
D

〉(int)
b . For minimally and conformally coupled scalars these forces tend

to decrease the brane thickness.

5. Conclusion

We have considered the one-loop vacuum effects for a massive scalar field induced by a
Z2-symmetric thick brane on the (D + 1)-dimensional AdS bulk. Among the most important
characteristics of the vacuum, which carry information about the internal structure of the
brane, are the VEVs for the field square and the EMT. In order to obtain these expectation
values, we first construct the Wightman function. In the region outside the brane, this function
is presented as a sum of two distinct contributions. The first one corresponds to the Wightman
function in the free AdS geometry and the second one is induced by the brane. The latter is
given by formula (13), where the tilted notation is defined by formula (14) with the coefficient
from (15). This coefficient is determined by the radial part of the interior eigenfunctions and
describes the influence of the core properties on the vacuum characteristics in the exterior
region.

In section 3, we have investigated the influence of the non-trivial internal structure of the
brane on the VEVs of the field square and the EMT. The parts in these VEVs induced by
the brane are directly obtained from the corresponding part of the Wightman function. These
parts are given by formulae (18) and (22) for the field square and the EMT respectively. For
a conformally coupled massless scalar field the corresponding EMT vanishes. The parts in
the VEVs of the field square and EMT induced by the brane diverge on the boundary of the
brane. At large distances from the brane the brane-induced VEVs are suppressed by the factor
e−2νkDy . In the limit of the strong gravitational fields corresponding to large values of the
AdS energy scale kD , for points not too close to the brane the parts in the VEVs induced by
the brane behave as kD±1

D e−2νkD(y−a) with upper/lower sign corresponding to the EMT/field
square. In this case the relative contribution of the brane-induced effects is exponentially
suppressed with respect to the free AdS part.

As an application of the general results, in section 4 we have considered a simple model
with flat spacetime in the region inside the brane. The brane-induced parts of the exterior VEVs
in this model are obtained from the general results by taking the function in the coefficient
of the tilted notation from equation (28). We have also investigated the vacuum densities
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inside the brane. Though the spacetime geometry inside the brane is Monkowskian, the AdS
geometry of the exterior region induces vacuum polarization effects in this region as well.
In order to find the corresponding renormalized VEVs of the field square and the EMT we
have presented the Wightman function in the interior region in decomposed form (33). In this
representation the first term on the right is the Wightman function in the Minkowski spacetime
orbifolded along the direction perpendicular to the brane and the second one is induced by the
AdS geometry in the exterior region. The corresponding parts in the VEVs of the field square
and the EMT are given by formulae (38), (44) and (45). For a massless conformally coupled
scalar field these parts vanish. In the general case of the curvature coupling parameter, the
corresponding radial stress is uniform inside the brane and determines the interior vacuum
forces acting on the boundary of the brane. For both minimally and conformally coupled
scalar fields these forces tend to decrease the thickness of the brane. When the brane thickness
tends to zero, from the formulae of the model with flat interior the corresponding results in
the RS 1-brane model are obtained.
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